from __future__ import unicode_literals from itertools import chain import datetime import sys import warnings import time import threading import time as mod_time import hashlib from redis._compat import (basestring, bytes, imap, iteritems, iterkeys, itervalues, izip, long, nativestr, safe_unicode) from redis.connection import (ConnectionPool, UnixDomainSocketConnection, SSLConnection, Token) from redis.lock import Lock from redis.exceptions import ( ConnectionError, DataError, ExecAbortError, NoScriptError, PubSubError, RedisError, ResponseError, TimeoutError, WatchError, ) SYM_EMPTY = b'' EMPTY_RESPONSE = 'EMPTY_RESPONSE' def list_or_args(keys, args): # returns a single new list combining keys and args try: iter(keys) # a string or bytes instance can be iterated, but indicates # keys wasn't passed as a list if isinstance(keys, (basestring, bytes)): keys = [keys] else: keys = list(keys) except TypeError: keys = [keys] if args: keys.extend(args) return keys def timestamp_to_datetime(response): "Converts a unix timestamp to a Python datetime object" if not response: return None try: response = int(response) except ValueError: return None return datetime.datetime.fromtimestamp(response) def string_keys_to_dict(key_string, callback): return dict.fromkeys(key_string.split(), callback) def dict_merge(*dicts): merged = {} for d in dicts: merged.update(d) return merged def parse_debug_object(response): "Parse the results of Redis's DEBUG OBJECT command into a Python dict" # The 'type' of the object is the first item in the response, but isn't # prefixed with a name response = nativestr(response) response = 'type:' + response response = dict(kv.split(':') for kv in response.split()) # parse some expected int values from the string response # note: this cmd isn't spec'd so these may not appear in all redis versions int_fields = ('refcount', 'serializedlength', 'lru', 'lru_seconds_idle') for field in int_fields: if field in response: response[field] = int(response[field]) return response def parse_object(response, infotype): "Parse the results of an OBJECT command" if infotype in ('idletime', 'refcount'): return int_or_none(response) return response def parse_info(response): "Parse the result of Redis's INFO command into a Python dict" info = {} response = nativestr(response) def get_value(value): if ',' not in value or '=' not in value: try: if '.' in value: return float(value) else: return int(value) except ValueError: return value else: sub_dict = {} for item in value.split(','): k, v = item.rsplit('=', 1) sub_dict[k] = get_value(v) return sub_dict for line in response.splitlines(): if line and not line.startswith('#'): if line.find(':') != -1: # support keys that include ':' by using rsplit key, value = line.rsplit(':', 1) info[key] = get_value(value) else: # if the line isn't splittable, append it to the "__raw__" key info.setdefault('__raw__', []).append(line) return info SENTINEL_STATE_TYPES = { 'can-failover-its-master': int, 'config-epoch': int, 'down-after-milliseconds': int, 'failover-timeout': int, 'info-refresh': int, 'last-hello-message': int, 'last-ok-ping-reply': int, 'last-ping-reply': int, 'last-ping-sent': int, 'master-link-down-time': int, 'master-port': int, 'num-other-sentinels': int, 'num-slaves': int, 'o-down-time': int, 'pending-commands': int, 'parallel-syncs': int, 'port': int, 'quorum': int, 'role-reported-time': int, 's-down-time': int, 'slave-priority': int, 'slave-repl-offset': int, 'voted-leader-epoch': int } def parse_sentinel_state(item): result = pairs_to_dict_typed(item, SENTINEL_STATE_TYPES) flags = set(result['flags'].split(',')) for name, flag in (('is_master', 'master'), ('is_slave', 'slave'), ('is_sdown', 's_down'), ('is_odown', 'o_down'), ('is_sentinel', 'sentinel'), ('is_disconnected', 'disconnected'), ('is_master_down', 'master_down')): result[name] = flag in flags return result def parse_sentinel_master(response): return parse_sentinel_state(imap(nativestr, response)) def parse_sentinel_masters(response): result = {} for item in response: state = parse_sentinel_state(imap(nativestr, item)) result[state['name']] = state return result def parse_sentinel_slaves_and_sentinels(response): return [parse_sentinel_state(imap(nativestr, item)) for item in response] def parse_sentinel_get_master(response): return response and (response[0], int(response[1])) or None def pairs_to_dict(response, decode_keys=False): "Create a dict given a list of key/value pairs" if decode_keys: # the iter form is faster, but I don't know how to make that work # with a nativestr() map return dict(izip(imap(nativestr, response[::2]), response[1::2])) else: it = iter(response) return dict(izip(it, it)) def pairs_to_dict_typed(response, type_info): it = iter(response) result = {} for key, value in izip(it, it): if key in type_info: try: value = type_info[key](value) except Exception: # if for some reason the value can't be coerced, just use # the string value pass result[key] = value return result def zset_score_pairs(response, **options): """ If ``withscores`` is specified in the options, return the response as a list of (value, score) pairs """ if not response or not options.get('withscores'): return response score_cast_func = options.get('score_cast_func', float) it = iter(response) return list(izip(it, imap(score_cast_func, it))) def sort_return_tuples(response, **options): """ If ``groups`` is specified, return the response as a list of n-element tuples with n being the value found in options['groups'] """ if not response or not options.get('groups'): return response n = options['groups'] return list(izip(*[response[i::n] for i in range(n)])) def int_or_none(response): if response is None: return None return int(response) def parse_stream_list(response): if response is None: return None return [(r[0], pairs_to_dict(r[1])) for r in response] def pairs_to_dict_with_nativestr_keys(response): return pairs_to_dict(response, decode_keys=True) def parse_list_of_dicts(response): return list(imap(pairs_to_dict_with_nativestr_keys, response)) def parse_xclaim(response, **options): if options.get('parse_justid', False): return response return parse_stream_list(response) def parse_xinfo_stream(response): data = pairs_to_dict(response, decode_keys=True) first = data['first-entry'] data['first-entry'] = (first[0], pairs_to_dict(first[1])) last = data['last-entry'] data['last-entry'] = (last[0], pairs_to_dict(last[1])) return data def parse_xread(response): if response is None: return [] return [[nativestr(r[0]), parse_stream_list(r[1])] for r in response] def parse_xpending(response, **options): if options.get('parse_detail', False): return parse_xpending_range(response) consumers = [{'name': n, 'pending': long(p)} for n, p in response[3] or []] return { 'pending': response[0], 'min': response[1], 'max': response[2], 'consumers': consumers } def parse_xpending_range(response): k = ('message_id', 'consumer', 'time_since_delivered', 'times_delivered') return [dict(izip(k, r)) for r in response] def float_or_none(response): if response is None: return None return float(response) def bool_ok(response): return nativestr(response) == 'OK' def parse_zadd(response, **options): if options.get('as_score'): return float(response) return int(response) def parse_client_list(response, **options): clients = [] for c in nativestr(response).splitlines(): # Values might contain '=' clients.append(dict(pair.split('=', 1) for pair in c.split(' '))) return clients def parse_config_get(response, **options): response = [nativestr(i) if i is not None else None for i in response] return response and pairs_to_dict(response) or {} def parse_scan(response, **options): cursor, r = response return long(cursor), r def parse_hscan(response, **options): cursor, r = response return long(cursor), r and pairs_to_dict(r) or {} def parse_zscan(response, **options): score_cast_func = options.get('score_cast_func', float) cursor, r = response it = iter(r) return long(cursor), list(izip(it, imap(score_cast_func, it))) def parse_slowlog_get(response, **options): return [{ 'id': item[0], 'start_time': int(item[1]), 'duration': int(item[2]), 'command': b' '.join(item[3]) } for item in response] def parse_cluster_info(response, **options): response = nativestr(response) return dict(line.split(':') for line in response.splitlines() if line) def _parse_node_line(line): line_items = line.split(' ') node_id, addr, flags, master_id, ping, pong, epoch, \ connected = line.split(' ')[:8] slots = [sl.split('-') for sl in line_items[8:]] node_dict = { 'node_id': node_id, 'flags': flags, 'master_id': master_id, 'last_ping_sent': ping, 'last_pong_rcvd': pong, 'epoch': epoch, 'slots': slots, 'connected': True if connected == 'connected' else False } return addr, node_dict def parse_cluster_nodes(response, **options): response = nativestr(response) raw_lines = response if isinstance(response, basestring): raw_lines = response.splitlines() return dict(_parse_node_line(line) for line in raw_lines) def parse_georadius_generic(response, **options): if options['store'] or options['store_dist']: # `store` and `store_diff` cant be combined # with other command arguments. return response if type(response) != list: response_list = [response] else: response_list = response if not options['withdist'] and not options['withcoord']\ and not options['withhash']: # just a bunch of places return [nativestr(r) for r in response_list] cast = { 'withdist': float, 'withcoord': lambda ll: (float(ll[0]), float(ll[1])), 'withhash': int } # zip all output results with each casting functino to get # the properly native Python value. f = [nativestr] f += [cast[o] for o in ['withdist', 'withhash', 'withcoord'] if options[o]] return [ list(map(lambda fv: fv[0](fv[1]), zip(f, r))) for r in response_list ] def parse_pubsub_numsub(response, **options): return list(zip(response[0::2], response[1::2])) class Redis(object): """ Implementation of the Redis protocol. This abstract class provides a Python interface to all Redis commands and an implementation of the Redis protocol. Connection and Pipeline derive from this, implementing how the commands are sent and received to the Redis server """ RESPONSE_CALLBACKS = dict_merge( string_keys_to_dict( 'AUTH EXPIRE EXPIREAT HEXISTS HMSET MOVE MSETNX PERSIST ' 'PSETEX RENAMENX SISMEMBER SMOVE SETEX SETNX', bool ), string_keys_to_dict( 'BITCOUNT BITPOS DECRBY DEL EXISTS GEOADD GETBIT HDEL HLEN ' 'HSTRLEN INCRBY LINSERT LLEN LPUSHX PFADD PFCOUNT RPUSHX SADD ' 'SCARD SDIFFSTORE SETBIT SETRANGE SINTERSTORE SREM STRLEN ' 'SUNIONSTORE UNLINK XACK XDEL XLEN XTRIM ZCARD ZLEXCOUNT ZREM ' 'ZREMRANGEBYLEX ZREMRANGEBYRANK ZREMRANGEBYSCORE', int ), string_keys_to_dict( 'INCRBYFLOAT HINCRBYFLOAT', float ), string_keys_to_dict( # these return OK, or int if redis-server is >=1.3.4 'LPUSH RPUSH', lambda r: isinstance(r, (long, int)) and r or nativestr(r) == 'OK' ), string_keys_to_dict('SORT', sort_return_tuples), string_keys_to_dict('ZSCORE ZINCRBY GEODIST', float_or_none), string_keys_to_dict( 'FLUSHALL FLUSHDB LSET LTRIM MSET PFMERGE RENAME ' 'SAVE SELECT SHUTDOWN SLAVEOF SWAPDB WATCH UNWATCH', bool_ok ), string_keys_to_dict('BLPOP BRPOP', lambda r: r and tuple(r) or None), string_keys_to_dict( 'SDIFF SINTER SMEMBERS SUNION', lambda r: r and set(r) or set() ), string_keys_to_dict( 'ZPOPMAX ZPOPMIN ZRANGE ZRANGEBYSCORE ZREVRANGE ZREVRANGEBYSCORE', zset_score_pairs ), string_keys_to_dict('BZPOPMIN BZPOPMAX', \ lambda r: r and (r[0], r[1], float(r[2])) or None), string_keys_to_dict('ZRANK ZREVRANK', int_or_none), string_keys_to_dict('XREVRANGE XRANGE', parse_stream_list), string_keys_to_dict('XREAD XREADGROUP', parse_xread), string_keys_to_dict('BGREWRITEAOF BGSAVE', lambda r: True), { 'CLIENT GETNAME': lambda r: r and nativestr(r), 'CLIENT ID': int, 'CLIENT KILL': bool_ok, 'CLIENT LIST': parse_client_list, 'CLIENT SETNAME': bool_ok, 'CLIENT UNBLOCK': lambda r: r and int(r) == 1 or False, 'CLIENT PAUSE': bool_ok, 'CLUSTER ADDSLOTS': bool_ok, 'CLUSTER COUNT-FAILURE-REPORTS': lambda x: int(x), 'CLUSTER COUNTKEYSINSLOT': lambda x: int(x), 'CLUSTER DELSLOTS': bool_ok, 'CLUSTER FAILOVER': bool_ok, 'CLUSTER FORGET': bool_ok, 'CLUSTER INFO': parse_cluster_info, 'CLUSTER KEYSLOT': lambda x: int(x), 'CLUSTER MEET': bool_ok, 'CLUSTER NODES': parse_cluster_nodes, 'CLUSTER REPLICATE': bool_ok, 'CLUSTER RESET': bool_ok, 'CLUSTER SAVECONFIG': bool_ok, 'CLUSTER SET-CONFIG-EPOCH': bool_ok, 'CLUSTER SETSLOT': bool_ok, 'CLUSTER SLAVES': parse_cluster_nodes, 'CONFIG GET': parse_config_get, 'CONFIG RESETSTAT': bool_ok, 'CONFIG SET': bool_ok, 'DEBUG OBJECT': parse_debug_object, 'GEOHASH': lambda r: list(map(nativestr, r)), 'GEOPOS': lambda r: list(map(lambda ll: (float(ll[0]), float(ll[1])) if ll is not None else None, r)), 'GEORADIUS': parse_georadius_generic, 'GEORADIUSBYMEMBER': parse_georadius_generic, 'HGETALL': lambda r: r and pairs_to_dict(r) or {}, 'HSCAN': parse_hscan, 'INFO': parse_info, 'LASTSAVE': timestamp_to_datetime, 'MEMORY PURGE': bool_ok, 'MEMORY USAGE': int_or_none, 'OBJECT': parse_object, 'PING': lambda r: nativestr(r) == 'PONG', 'PUBSUB NUMSUB': parse_pubsub_numsub, 'RANDOMKEY': lambda r: r and r or None, 'SCAN': parse_scan, 'SCRIPT EXISTS': lambda r: list(imap(bool, r)), 'SCRIPT FLUSH': bool_ok, 'SCRIPT KILL': bool_ok, 'SCRIPT LOAD': nativestr, 'SENTINEL GET-MASTER-ADDR-BY-NAME': parse_sentinel_get_master, 'SENTINEL MASTER': parse_sentinel_master, 'SENTINEL MASTERS': parse_sentinel_masters, 'SENTINEL MONITOR': bool_ok, 'SENTINEL REMOVE': bool_ok, 'SENTINEL SENTINELS': parse_sentinel_slaves_and_sentinels, 'SENTINEL SET': bool_ok, 'SENTINEL SLAVES': parse_sentinel_slaves_and_sentinels, 'SET': lambda r: r and nativestr(r) == 'OK', 'SLOWLOG GET': parse_slowlog_get, 'SLOWLOG LEN': int, 'SLOWLOG RESET': bool_ok, 'SSCAN': parse_scan, 'TIME': lambda x: (int(x[0]), int(x[1])), 'XCLAIM': parse_xclaim, 'XGROUP CREATE': bool_ok, 'XGROUP DELCONSUMER': int, 'XGROUP DESTROY': bool, 'XGROUP SETID': bool_ok, 'XINFO CONSUMERS': parse_list_of_dicts, 'XINFO GROUPS': parse_list_of_dicts, 'XINFO STREAM': parse_xinfo_stream, 'XPENDING': parse_xpending, 'ZADD': parse_zadd, 'ZSCAN': parse_zscan, } ) @classmethod def from_url(cls, url, db=None, **kwargs): """ Return a Redis client object configured from the given URL For example:: redis://[:password]@localhost:6379/0 rediss://[:password]@localhost:6379/0 unix://[:password]@/path/to/socket.sock?db=0 Three URL schemes are supported: - ```redis://`` `_ creates a normal TCP socket connection - ```rediss://`` `_ creates a SSL wrapped TCP socket connection - ``unix://`` creates a Unix Domain Socket connection There are several ways to specify a database number. The parse function will return the first specified option: 1. A ``db`` querystring option, e.g. redis://localhost?db=0 2. If using the redis:// scheme, the path argument of the url, e.g. redis://localhost/0 3. The ``db`` argument to this function. If none of these options are specified, db=0 is used. Any additional querystring arguments and keyword arguments will be passed along to the ConnectionPool class's initializer. In the case of conflicting arguments, querystring arguments always win. """ connection_pool = ConnectionPool.from_url(url, db=db, **kwargs) return cls(connection_pool=connection_pool) def __init__(self, host='localhost', port=6379, db=0, password=None, socket_timeout=None, socket_connect_timeout=None, socket_keepalive=None, socket_keepalive_options=None, connection_pool=None, unix_socket_path=None, encoding='utf-8', encoding_errors='strict', charset=None, errors=None, decode_responses=False, retry_on_timeout=False, ssl=False, ssl_keyfile=None, ssl_certfile=None, ssl_cert_reqs='required', ssl_ca_certs=None, max_connections=None): if not connection_pool: if charset is not None: warnings.warn(DeprecationWarning( '"charset" is deprecated. Use "encoding" instead')) encoding = charset if errors is not None: warnings.warn(DeprecationWarning( '"errors" is deprecated. Use "encoding_errors" instead')) encoding_errors = errors kwargs = { 'db': db, 'password': password, 'socket_timeout': socket_timeout, 'encoding': encoding, 'encoding_errors': encoding_errors, 'decode_responses': decode_responses, 'retry_on_timeout': retry_on_timeout, 'max_connections': max_connections } # based on input, setup appropriate connection args if unix_socket_path is not None: kwargs.update({ 'path': unix_socket_path, 'connection_class': UnixDomainSocketConnection }) else: # TCP specific options kwargs.update({ 'host': host, 'port': port, 'socket_connect_timeout': socket_connect_timeout, 'socket_keepalive': socket_keepalive, 'socket_keepalive_options': socket_keepalive_options, }) if ssl: kwargs.update({ 'connection_class': SSLConnection, 'ssl_keyfile': ssl_keyfile, 'ssl_certfile': ssl_certfile, 'ssl_cert_reqs': ssl_cert_reqs, 'ssl_ca_certs': ssl_ca_certs, }) connection_pool = ConnectionPool(**kwargs) self.connection_pool = connection_pool self.response_callbacks = self.__class__.RESPONSE_CALLBACKS.copy() def __repr__(self): return "%s<%s>" % (type(self).__name__, repr(self.connection_pool)) def set_response_callback(self, command, callback): "Set a custom Response Callback" self.response_callbacks[command] = callback def pipeline(self, transaction=True, shard_hint=None): """ Return a new pipeline object that can queue multiple commands for later execution. ``transaction`` indicates whether all commands should be executed atomically. Apart from making a group of operations atomic, pipelines are useful for reducing the back-and-forth overhead between the client and server. """ return Pipeline( self.connection_pool, self.response_callbacks, transaction, shard_hint) def transaction(self, func, *watches, **kwargs): """ Convenience method for executing the callable `func` as a transaction while watching all keys specified in `watches`. The 'func' callable should expect a single argument which is a Pipeline object. """ shard_hint = kwargs.pop('shard_hint', None) value_from_callable = kwargs.pop('value_from_callable', False) watch_delay = kwargs.pop('watch_delay', None) with self.pipeline(True, shard_hint) as pipe: while True: try: if watches: pipe.watch(*watches) func_value = func(pipe) exec_value = pipe.execute() return func_value if value_from_callable else exec_value except WatchError: if watch_delay is not None and watch_delay > 0: time.sleep(watch_delay) continue def lock(self, name, timeout=None, sleep=0.1, blocking_timeout=None, lock_class=None, thread_local=True): """ Return a new Lock object using key ``name`` that mimics the behavior of threading.Lock. If specified, ``timeout`` indicates a maximum life for the lock. By default, it will remain locked until release() is called. ``sleep`` indicates the amount of time to sleep per loop iteration when the lock is in blocking mode and another client is currently holding the lock. ``blocking_timeout`` indicates the maximum amount of time in seconds to spend trying to acquire the lock. A value of ``None`` indicates continue trying forever. ``blocking_timeout`` can be specified as a float or integer, both representing the number of seconds to wait. ``lock_class`` forces the specified lock implementation. ``thread_local`` indicates whether the lock token is placed in thread-local storage. By default, the token is placed in thread local storage so that a thread only sees its token, not a token set by another thread. Consider the following timeline: time: 0, thread-1 acquires `my-lock`, with a timeout of 5 seconds. thread-1 sets the token to "abc" time: 1, thread-2 blocks trying to acquire `my-lock` using the Lock instance. time: 5, thread-1 has not yet completed. redis expires the lock key. time: 5, thread-2 acquired `my-lock` now that it's available. thread-2 sets the token to "xyz" time: 6, thread-1 finishes its work and calls release(). if the token is *not* stored in thread local storage, then thread-1 would see the token value as "xyz" and would be able to successfully release the thread-2's lock. In some use cases it's necessary to disable thread local storage. For example, if you have code where one thread acquires a lock and passes that lock instance to a worker thread to release later. If thread local storage isn't disabled in this case, the worker thread won't see the token set by the thread that acquired the lock. Our assumption is that these cases aren't common and as such default to using thread local storage. """ if lock_class is None: lock_class = Lock return lock_class(self, name, timeout=timeout, sleep=sleep, blocking_timeout=blocking_timeout, thread_local=thread_local) def pubsub(self, **kwargs): """ Return a Publish/Subscribe object. With this object, you can subscribe to channels and listen for messages that get published to them. """ return PubSub(self.connection_pool, **kwargs) # COMMAND EXECUTION AND PROTOCOL PARSING def execute_command(self, *args, **options): "Execute a command and return a parsed response" pool = self.connection_pool command_name = args[0] connection = pool.get_connection(command_name, **options) try: connection.send_command(*args) return self.parse_response(connection, command_name, **options) except (ConnectionError, TimeoutError) as e: connection.disconnect() if not connection.retry_on_timeout and isinstance(e, TimeoutError): raise connection.send_command(*args) return self.parse_response(connection, command_name, **options) finally: pool.release(connection) def parse_response(self, connection, command_name, **options): "Parses a response from the Redis server" try: response = connection.read_response() except ResponseError: if EMPTY_RESPONSE in options: return options[EMPTY_RESPONSE] raise if command_name in self.response_callbacks: return self.response_callbacks[command_name](response, **options) return response # SERVER INFORMATION def bgrewriteaof(self): "Tell the Redis server to rewrite the AOF file from data in memory." return self.execute_command('BGREWRITEAOF') def bgsave(self): """ Tell the Redis server to save its data to disk. Unlike save(), this method is asynchronous and returns immediately. """ return self.execute_command('BGSAVE') def client_kill(self, address): "Disconnects the client at ``address`` (ip:port)" return self.execute_command('CLIENT KILL', address) def client_list(self, _type=None): """ Returns a list of currently connected clients. If type of client specified, only that type will be returned. :param _type: optional. one of the client types (normal, master, replica, pubsub) """ "Returns a list of currently connected clients" if _type is not None: client_types = ('normal', 'master', 'replica', 'pubsub') if str(_type).lower() not in client_types: raise DataError("CLIENT LIST _type must be one of %r" % ( client_types,)) return self.execute_command('CLIENT LIST', Token.get_token('TYPE'), _type) return self.execute_command('CLIENT LIST') def client_getname(self): "Returns the current connection name" return self.execute_command('CLIENT GETNAME') def client_id(self): "Returns the current connection id" return self.execute_command('CLIENT ID') def client_setname(self, name): "Sets the current connection name" return self.execute_command('CLIENT SETNAME', name) def client_unblock(self, client_id, error=False): """ Unblocks a connection by its client id. If ``error`` is True, unblocks the client with a special error message. If ``error`` is False (default), the client is unblocked using the regular timeout mechanism. """ args = ['CLIENT UNBLOCK', int(client_id)] if error: args.append(Token.get_token('ERROR')) return self.execute_command(*args) def client_pause(self, timeout): """ Suspend all the Redis clients for the specified amount of time :param timeout: milliseconds to pause clients """ if not isinstance(timeout, (int, long)): raise DataError("CLIENT PAUSE timeout must be an integer") return self.execute_command('CLIENT PAUSE', str(timeout)) def config_get(self, pattern="*"): "Return a dictionary of configuration based on the ``pattern``" return self.execute_command('CONFIG GET', pattern) def config_set(self, name, value): "Set config item ``name`` with ``value``" return self.execute_command('CONFIG SET', name, value) def config_resetstat(self): "Reset runtime statistics" return self.execute_command('CONFIG RESETSTAT') def config_rewrite(self): "Rewrite config file with the minimal change to reflect running config" return self.execute_command('CONFIG REWRITE') def dbsize(self): "Returns the number of keys in the current database" return self.execute_command('DBSIZE') def debug_object(self, key): "Returns version specific meta information about a given key" return self.execute_command('DEBUG OBJECT', key) def echo(self, value): "Echo the string back from the server" return self.execute_command('ECHO', value) def flushall(self, asynchronous=False): """ Delete all keys in all databases on the current host. ``asynchronous`` indicates whether the operation is executed asynchronously by the server. """ args = [] if asynchronous: args.append(Token.get_token('ASYNC')) return self.execute_command('FLUSHALL', *args) def flushdb(self, asynchronous=False): """ Delete all keys in the current database. ``asynchronous`` indicates whether the operation is executed asynchronously by the server. """ args = [] if asynchronous: args.append(Token.get_token('ASYNC')) return self.execute_command('FLUSHDB', *args) def swapdb(self, first, second): "Swap two databases" return self.execute_command('SWAPDB', first, second) def info(self, section=None): """ Returns a dictionary containing information about the Redis server The ``section`` option can be used to select a specific section of information The section option is not supported by older versions of Redis Server, and will generate ResponseError """ if section is None: return self.execute_command('INFO') else: return self.execute_command('INFO', section) def lastsave(self): """ Return a Python datetime object representing the last time the Redis database was saved to disk """ return self.execute_command('LASTSAVE') def migrate(self, host, port, keys, destination_db, timeout, copy=False, replace=False, auth=None): """ Migrate 1 or more keys from the current Redis server to a different server specified by the ``host``, ``port`` and ``destination_db``. The ``timeout``, specified in milliseconds, indicates the maximum time the connection between the two servers can be idle before the command is interrupted. If ``copy`` is True, the specified ``keys`` are NOT deleted from the source server. If ``replace`` is True, this operation will overwrite the keys on the destination server if they exist. If ``auth`` is specified, authenticate to the destination server with the password provided. """ keys = list_or_args(keys, []) if not keys: raise DataError('MIGRATE requires at least one key') pieces = [] if copy: pieces.append(Token.get_token('COPY')) if replace: pieces.append(Token.get_token('REPLACE')) if auth: pieces.append(Token.get_token('AUTH')) pieces.append(auth) pieces.append(Token.get_token('KEYS')) pieces.extend(keys) return self.execute_command('MIGRATE', host, port, '', destination_db, timeout, *pieces) def object(self, infotype, key): "Return the encoding, idletime, or refcount about the key" return self.execute_command('OBJECT', infotype, key, infotype=infotype) def memory_usage(self, key, samples=None): """ Return the total memory usage for key, its value and associated administrative overheads. For nested data structures, ``samples`` is the number of elements to sample. If left unspecified, the server's default is 5. Use 0 to sample all elements. """ args = [] if isinstance(samples, int): args.extend([Token.get_token('SAMPLES'), samples]) return self.execute_command('MEMORY USAGE', key, *args) def memory_purge(self): "Attempts to purge dirty pages for reclamation by allocator" return self.execute_command('MEMORY PURGE') def ping(self): "Ping the Redis server" return self.execute_command('PING') def save(self): """ Tell the Redis server to save its data to disk, blocking until the save is complete """ return self.execute_command('SAVE') def sentinel(self, *args): "Redis Sentinel's SENTINEL command." warnings.warn( DeprecationWarning('Use the individual sentinel_* methods')) def sentinel_get_master_addr_by_name(self, service_name): "Returns a (host, port) pair for the given ``service_name``" return self.execute_command('SENTINEL GET-MASTER-ADDR-BY-NAME', service_name) def sentinel_master(self, service_name): "Returns a dictionary containing the specified masters state." return self.execute_command('SENTINEL MASTER', service_name) def sentinel_masters(self): "Returns a list of dictionaries containing each master's state." return self.execute_command('SENTINEL MASTERS') def sentinel_monitor(self, name, ip, port, quorum): "Add a new master to Sentinel to be monitored" return self.execute_command('SENTINEL MONITOR', name, ip, port, quorum) def sentinel_remove(self, name): "Remove a master from Sentinel's monitoring" return self.execute_command('SENTINEL REMOVE', name) def sentinel_sentinels(self, service_name): "Returns a list of sentinels for ``service_name``" return self.execute_command('SENTINEL SENTINELS', service_name) def sentinel_set(self, name, option, value): "Set Sentinel monitoring parameters for a given master" return self.execute_command('SENTINEL SET', name, option, value) def sentinel_slaves(self, service_name): "Returns a list of slaves for ``service_name``" return self.execute_command('SENTINEL SLAVES', service_name) def shutdown(self, save=False, nosave=False): """Shutdown the Redis server. If Redis has persistence configured, data will be flushed before shutdown. If the "save" option is set, a data flush will be attempted even if there is no persistence configured. If the "nosave" option is set, no data flush will be attempted. The "save" and "nosave" options cannot both be set. """ if save and nosave: raise DataError('SHUTDOWN save and nosave cannot both be set') args = ['SHUTDOWN'] if save: args.append('SAVE') if nosave: args.append('NOSAVE') try: self.execute_command(*args) except ConnectionError: # a ConnectionError here is expected return raise RedisError("SHUTDOWN seems to have failed.") def slaveof(self, host=None, port=None): """ Set the server to be a replicated slave of the instance identified by the ``host`` and ``port``. If called without arguments, the instance is promoted to a master instead. """ if host is None and port is None: return self.execute_command('SLAVEOF', Token.get_token('NO'), Token.get_token('ONE')) return self.execute_command('SLAVEOF', host, port) def slowlog_get(self, num=None): """ Get the entries from the slowlog. If ``num`` is specified, get the most recent ``num`` items. """ args = ['SLOWLOG GET'] if num is not None: args.append(num) return self.execute_command(*args) def slowlog_len(self): "Get the number of items in the slowlog" return self.execute_command('SLOWLOG LEN') def slowlog_reset(self): "Remove all items in the slowlog" return self.execute_command('SLOWLOG RESET') def time(self): """ Returns the server time as a 2-item tuple of ints: (seconds since epoch, microseconds into this second). """ return self.execute_command('TIME') def wait(self, num_replicas, timeout): """ Redis synchronous replication That returns the number of replicas that processed the query when we finally have at least ``num_replicas``, or when the ``timeout`` was reached. """ return self.execute_command('WAIT', num_replicas, timeout) # BASIC KEY COMMANDS def append(self, key, value): """ Appends the string ``value`` to the value at ``key``. If ``key`` doesn't already exist, create it with a value of ``value``. Returns the new length of the value at ``key``. """ return self.execute_command('APPEND', key, value) def bitcount(self, key, start=None, end=None): """ Returns the count of set bits in the value of ``key``. Optional ``start`` and ``end`` paramaters indicate which bytes to consider """ params = [key] if start is not None and end is not None: params.append(start) params.append(end) elif (start is not None and end is None) or \ (end is not None and start is None): raise DataError("Both start and end must be specified") return self.execute_command('BITCOUNT', *params) def bitfield(self, key, default_overflow=None): """ Return a BitFieldOperation instance to conveniently construct one or more bitfield operations on ``key``. """ return BitFieldOperation(self, key, default_overflow=default_overflow) def bitop(self, operation, dest, *keys): """ Perform a bitwise operation using ``operation`` between ``keys`` and store the result in ``dest``. """ return self.execute_command('BITOP', operation, dest, *keys) def bitpos(self, key, bit, start=None, end=None): """ Return the position of the first bit set to 1 or 0 in a string. ``start`` and ``end`` difines search range. The range is interpreted as a range of bytes and not a range of bits, so start=0 and end=2 means to look at the first three bytes. """ if bit not in (0, 1): raise DataError('bit must be 0 or 1') params = [key, bit] start is not None and params.append(start) if start is not None and end is not None: params.append(end) elif start is None and end is not None: raise DataError("start argument is not set, " "when end is specified") return self.execute_command('BITPOS', *params) def decr(self, name, amount=1): """ Decrements the value of ``key`` by ``amount``. If no key exists, the value will be initialized as 0 - ``amount`` """ # An alias for ``decr()``, because it is already implemented # as DECRBY redis command. return self.decrby(name, amount) def decrby(self, name, amount=1): """ Decrements the value of ``key`` by ``amount``. If no key exists, the value will be initialized as 0 - ``amount`` """ return self.execute_command('DECRBY', name, amount) def delete(self, *names): "Delete one or more keys specified by ``names``" return self.execute_command('DEL', *names) def __delitem__(self, name): self.delete(name) def dump(self, name): """ Return a serialized version of the value stored at the specified key. If key does not exist a nil bulk reply is returned. """ return self.execute_command('DUMP', name) def exists(self, *names): "Returns the number of ``names`` that exist" return self.execute_command('EXISTS', *names) __contains__ = exists def expire(self, name, time): """ Set an expire flag on key ``name`` for ``time`` seconds. ``time`` can be represented by an integer or a Python timedelta object. """ if isinstance(time, datetime.timedelta): time = int(time.total_seconds()) return self.execute_command('EXPIRE', name, time) def expireat(self, name, when): """ Set an expire flag on key ``name``. ``when`` can be represented as an integer indicating unix time or a Python datetime object. """ if isinstance(when, datetime.datetime): when = int(mod_time.mktime(when.timetuple())) return self.execute_command('EXPIREAT', name, when) def get(self, name): """ Return the value at key ``name``, or None if the key doesn't exist """ return self.execute_command('GET', name) def __getitem__(self, name): """ Return the value at key ``name``, raises a KeyError if the key doesn't exist. """ value = self.get(name) if value is not None: return value raise KeyError(name) def getbit(self, name, offset): "Returns a boolean indicating the value of ``offset`` in ``name``" return self.execute_command('GETBIT', name, offset) def getrange(self, key, start, end): """ Returns the substring of the string value stored at ``key``, determined by the offsets ``start`` and ``end`` (both are inclusive) """ return self.execute_command('GETRANGE', key, start, end) def getset(self, name, value): """ Sets the value at key ``name`` to ``value`` and returns the old value at key ``name`` atomically. """ return self.execute_command('GETSET', name, value) def incr(self, name, amount=1): """ Increments the value of ``key`` by ``amount``. If no key exists, the value will be initialized as ``amount`` """ return self.incrby(name, amount) def incrby(self, name, amount=1): """ Increments the value of ``key`` by ``amount``. If no key exists, the value will be initialized as ``amount`` """ # An alias for ``incr()``, because it is already implemented # as INCRBY redis command. return self.execute_command('INCRBY', name, amount) def incrbyfloat(self, name, amount=1.0): """ Increments the value at key ``name`` by floating ``amount``. If no key exists, the value will be initialized as ``amount`` """ return self.execute_command('INCRBYFLOAT', name, amount) def keys(self, pattern='*'): "Returns a list of keys matching ``pattern``" return self.execute_command('KEYS', pattern) def mget(self, keys, *args): """ Returns a list of values ordered identically to ``keys`` """ args = list_or_args(keys, args) options = {} if not args: options[EMPTY_RESPONSE] = [] return self.execute_command('MGET', *args, **options) def mset(self, mapping): """ Sets key/values based on a mapping. Mapping is a dictionary of key/value pairs. Both keys and values should be strings or types that can be cast to a string via str(). """ items = [] for pair in iteritems(mapping): items.extend(pair) return self.execute_command('MSET', *items) def msetnx(self, mapping): """ Sets key/values based on a mapping if none of the keys are already set. Mapping is a dictionary of key/value pairs. Both keys and values should be strings or types that can be cast to a string via str(). Returns a boolean indicating if the operation was successful. """ items = [] for pair in iteritems(mapping): items.extend(pair) return self.execute_command('MSETNX', *items) def move(self, name, db): "Moves the key ``name`` to a different Redis database ``db``" return self.execute_command('MOVE', name, db) def persist(self, name): "Removes an expiration on ``name``" return self.execute_command('PERSIST', name) def pexpire(self, name, time): """ Set an expire flag on key ``name`` for ``time`` milliseconds. ``time`` can be represented by an integer or a Python timedelta object. """ if isinstance(time, datetime.timedelta): time = int(time.total_seconds() * 1000) return self.execute_command('PEXPIRE', name, time) def pexpireat(self, name, when): """ Set an expire flag on key ``name``. ``when`` can be represented as an integer representing unix time in milliseconds (unix time * 1000) or a Python datetime object. """ if isinstance(when, datetime.datetime): ms = int(when.microsecond / 1000) when = int(mod_time.mktime(when.timetuple())) * 1000 + ms return self.execute_command('PEXPIREAT', name, when) def psetex(self, name, time_ms, value): """ Set the value of key ``name`` to ``value`` that expires in ``time_ms`` milliseconds. ``time_ms`` can be represented by an integer or a Python timedelta object """ if isinstance(time_ms, datetime.timedelta): time_ms = int(time_ms.total_seconds() * 1000) return self.execute_command('PSETEX', name, time_ms, value) def pttl(self, name): "Returns the number of milliseconds until the key ``name`` will expire" return self.execute_command('PTTL', name) def randomkey(self): "Returns the name of a random key" return self.execute_command('RANDOMKEY') def rename(self, src, dst): """ Rename key ``src`` to ``dst`` """ return self.execute_command('RENAME', src, dst) def renamenx(self, src, dst): "Rename key ``src`` to ``dst`` if ``dst`` doesn't already exist" return self.execute_command('RENAMENX', src, dst) def restore(self, name, ttl, value, replace=False): """ Create a key using the provided serialized value, previously obtained using DUMP. """ params = [name, ttl, value] if replace: params.append('REPLACE') return self.execute_command('RESTORE', *params) def set(self, name, value, ex=None, px=None, nx=False, xx=False): """ Set the value at key ``name`` to ``value`` ``ex`` sets an expire flag on key ``name`` for ``ex`` seconds. ``px`` sets an expire flag on key ``name`` for ``px`` milliseconds. ``nx`` if set to True, set the value at key ``name`` to ``value`` only if it does not exist. ``xx`` if set to True, set the value at key ``name`` to ``value`` only if it already exists. """ pieces = [name, value] if ex is not None: pieces.append('EX') if isinstance(ex, datetime.timedelta): ex = int(ex.total_seconds()) pieces.append(ex) if px is not None: pieces.append('PX') if isinstance(px, datetime.timedelta): px = int(px.total_seconds() * 1000) pieces.append(px) if nx: pieces.append('NX') if xx: pieces.append('XX') return self.execute_command('SET', *pieces) def __setitem__(self, name, value): self.set(name, value) def setbit(self, name, offset, value): """ Flag the ``offset`` in ``name`` as ``value``. Returns a boolean indicating the previous value of ``offset``. """ value = value and 1 or 0 return self.execute_command('SETBIT', name, offset, value) def setex(self, name, time, value): """ Set the value of key ``name`` to ``value`` that expires in ``time`` seconds. ``time`` can be represented by an integer or a Python timedelta object. """ if isinstance(time, datetime.timedelta): time = int(time.total_seconds()) return self.execute_command('SETEX', name, time, value) def setnx(self, name, value): "Set the value of key ``name`` to ``value`` if key doesn't exist" return self.execute_command('SETNX', name, value) def setrange(self, name, offset, value): """ Overwrite bytes in the value of ``name`` starting at ``offset`` with ``value``. If ``offset`` plus the length of ``value`` exceeds the length of the original value, the new value will be larger than before. If ``offset`` exceeds the length of the original value, null bytes will be used to pad between the end of the previous value and the start of what's being injected. Returns the length of the new string. """ return self.execute_command('SETRANGE', name, offset, value) def strlen(self, name): "Return the number of bytes stored in the value of ``name``" return self.execute_command('STRLEN', name) def substr(self, name, start, end=-1): """ Return a substring of the string at key ``name``. ``start`` and ``end`` are 0-based integers specifying the portion of the string to return. """ return self.execute_command('SUBSTR', name, start, end) def touch(self, *args): """ Alters the last access time of a key(s) ``*args``. A key is ignored if it does not exist. """ return self.execute_command('TOUCH', *args) def ttl(self, name): "Returns the number of seconds until the key ``name`` will expire" return self.execute_command('TTL', name) def type(self, name): "Returns the type of key ``name``" return self.execute_command('TYPE', name) def watch(self, *names): """ Watches the values at keys ``names``, or None if the key doesn't exist """ warnings.warn(DeprecationWarning('Call WATCH from a Pipeline object')) def unwatch(self): """ Unwatches the value at key ``name``, or None of the key doesn't exist """ warnings.warn( DeprecationWarning('Call UNWATCH from a Pipeline object')) def unlink(self, *names): "Unlink one or more keys specified by ``names``" return self.execute_command('UNLINK', *names) # LIST COMMANDS def blpop(self, keys, timeout=0): """ LPOP a value off of the first non-empty list named in the ``keys`` list. If none of the lists in ``keys`` has a value to LPOP, then block for ``timeout`` seconds, or until a value gets pushed on to one of the lists. If timeout is 0, then block indefinitely. """ if timeout is None: timeout = 0 keys = list_or_args(keys, None) keys.append(timeout) return self.execute_command('BLPOP', *keys) def brpop(self, keys, timeout=0): """ RPOP a value off of the first non-empty list named in the ``keys`` list. If none of the lists in ``keys`` has a value to RPOP, then block for ``timeout`` seconds, or until a value gets pushed on to one of the lists. If timeout is 0, then block indefinitely. """ if timeout is None: timeout = 0 keys = list_or_args(keys, None) keys.append(timeout) return self.execute_command('BRPOP', *keys) def brpoplpush(self, src, dst, timeout=0): """ Pop a value off the tail of ``src``, push it on the head of ``dst`` and then return it. This command blocks until a value is in ``src`` or until ``timeout`` seconds elapse, whichever is first. A ``timeout`` value of 0 blocks forever. """ if timeout is None: timeout = 0 return self.execute_command('BRPOPLPUSH', src, dst, timeout) def lindex(self, name, index): """ Return the item from list ``name`` at position ``index`` Negative indexes are supported and will return an item at the end of the list """ return self.execute_command('LINDEX', name, index) def linsert(self, name, where, refvalue, value): """ Insert ``value`` in list ``name`` either immediately before or after [``where``] ``refvalue`` Returns the new length of the list on success or -1 if ``refvalue`` is not in the list. """ return self.execute_command('LINSERT', name, where, refvalue, value) def llen(self, name): "Return the length of the list ``name``" return self.execute_command('LLEN', name) def lpop(self, name): "Remove and return the first item of the list ``name``" return self.execute_command('LPOP', name) def lpush(self, name, *values): "Push ``values`` onto the head of the list ``name``" return self.execute_command('LPUSH', name, *values) def lpushx(self, name, value): "Push ``value`` onto the head of the list ``name`` if ``name`` exists" return self.execute_command('LPUSHX', name, value) def lrange(self, name, start, end): """ Return a slice of the list ``name`` between position ``start`` and ``end`` ``start`` and ``end`` can be negative numbers just like Python slicing notation """ return self.execute_command('LRANGE', name, start, end) def lrem(self, name, count, value): """ Remove the first ``count`` occurrences of elements equal to ``value`` from the list stored at ``name``. The count argument influences the operation in the following ways: count > 0: Remove elements equal to value moving from head to tail. count < 0: Remove elements equal to value moving from tail to head. count = 0: Remove all elements equal to value. """ return self.execute_command('LREM', name, count, value) def lset(self, name, index, value): "Set ``position`` of list ``name`` to ``value``" return self.execute_command('LSET', name, index, value) def ltrim(self, name, start, end): """ Trim the list ``name``, removing all values not within the slice between ``start`` and ``end`` ``start`` and ``end`` can be negative numbers just like Python slicing notation """ return self.execute_command('LTRIM', name, start, end) def rpop(self, name): "Remove and return the last item of the list ``name``" return self.execute_command('RPOP', name) def rpoplpush(self, src, dst): """ RPOP a value off of the ``src`` list and atomically LPUSH it on to the ``dst`` list. Returns the value. """ return self.execute_command('RPOPLPUSH', src, dst) def rpush(self, name, *values): "Push ``values`` onto the tail of the list ``name``" return self.execute_command('RPUSH', name, *values) def rpushx(self, name, value): "Push ``value`` onto the tail of the list ``name`` if ``name`` exists" return self.execute_command('RPUSHX', name, value) def sort(self, name, start=None, num=None, by=None, get=None, desc=False, alpha=False, store=None, groups=False): """ Sort and return the list, set or sorted set at ``name``. ``start`` and ``num`` allow for paging through the sorted data ``by`` allows using an external key to weight and sort the items. Use an "*" to indicate where in the key the item value is located ``get`` allows for returning items from external keys rather than the sorted data itself. Use an "*" to indicate where int he key the item value is located ``desc`` allows for reversing the sort ``alpha`` allows for sorting lexicographically rather than numerically ``store`` allows for storing the result of the sort into the key ``store`` ``groups`` if set to True and if ``get`` contains at least two elements, sort will return a list of tuples, each containing the values fetched from the arguments to ``get``. """ if (start is not None and num is None) or \ (num is not None and start is None): raise DataError("``start`` and ``num`` must both be specified") pieces = [name] if by is not None: pieces.append(Token.get_token('BY')) pieces.append(by) if start is not None and num is not None: pieces.append(Token.get_token('LIMIT')) pieces.append(start) pieces.append(num) if get is not None: # If get is a string assume we want to get a single value. # Otherwise assume it's an interable and we want to get multiple # values. We can't just iterate blindly because strings are # iterable. if isinstance(get, (bytes, basestring)): pieces.append(Token.get_token('GET')) pieces.append(get) else: for g in get: pieces.append(Token.get_token('GET')) pieces.append(g) if desc: pieces.append(Token.get_token('DESC')) if alpha: pieces.append(Token.get_token('ALPHA')) if store is not None: pieces.append(Token.get_token('STORE')) pieces.append(store) if groups: if not get or isinstance(get, (bytes, basestring)) or len(get) < 2: raise DataError('when using "groups" the "get" argument ' 'must be specified and contain at least ' 'two keys') options = {'groups': len(get) if groups else None} return self.execute_command('SORT', *pieces, **options) # SCAN COMMANDS def scan(self, cursor=0, match=None, count=None): """ Incrementally return lists of key names. Also return a cursor indicating the scan position. ``match`` allows for filtering the keys by pattern ``count`` allows for hint the minimum number of returns """ pieces = [cursor] if match is not None: pieces.extend([Token.get_token('MATCH'), match]) if count is not None: pieces.extend([Token.get_token('COUNT'), count]) return self.execute_command('SCAN', *pieces) def scan_iter(self, match=None, count=None): """ Make an iterator using the SCAN command so that the client doesn't need to remember the cursor position. ``match`` allows for filtering the keys by pattern ``count`` allows for hint the minimum number of returns """ cursor = '0' while cursor != 0: cursor, data = self.scan(cursor=cursor, match=match, count=count) for item in data: yield item def sscan(self, name, cursor=0, match=None, count=None): """ Incrementally return lists of elements in a set. Also return a cursor indicating the scan position. ``match`` allows for filtering the keys by pattern ``count`` allows for hint the minimum number of returns """ pieces = [name, cursor] if match is not None: pieces.extend([Token.get_token('MATCH'), match]) if count is not None: pieces.extend([Token.get_token('COUNT'), count]) return self.execute_command('SSCAN', *pieces) def sscan_iter(self, name, match=None, count=None): """ Make an iterator using the SSCAN command so that the client doesn't need to remember the cursor position. ``match`` allows for filtering the keys by pattern ``count`` allows for hint the minimum number of returns """ cursor = '0' while cursor != 0: cursor, data = self.sscan(name, cursor=cursor, match=match, count=count) for item in data: yield item def hscan(self, name, cursor=0, match=None, count=None): """ Incrementally return key/value slices in a hash. Also return a cursor indicating the scan position. ``match`` allows for filtering the keys by pattern ``count`` allows for hint the minimum number of returns """ pieces = [name, cursor] if match is not None: pieces.extend([Token.get_token('MATCH'), match]) if count is not None: pieces.extend([Token.get_token('COUNT'), count]) return self.execute_command('HSCAN', *pieces) def hscan_iter(self, name, match=None, count=None): """ Make an iterator using the HSCAN command so that the client doesn't need to remember the cursor position. ``match`` allows for filtering the keys by pattern ``count`` allows for hint the minimum number of returns """ cursor = '0' while cursor != 0: cursor, data = self.hscan(name, cursor=cursor, match=match, count=count) for item in data.items(): yield item def zscan(self, name, cursor=0, match=None, count=None, score_cast_func=float): """ Incrementally return lists of elements in a sorted set. Also return a cursor indicating the scan position. ``match`` allows for filtering the keys by pattern ``count`` allows for hint the minimum number of returns ``score_cast_func`` a callable used to cast the score return value """ pieces = [name, cursor] if match is not None: pieces.extend([Token.get_token('MATCH'), match]) if count is not None: pieces.extend([Token.get_token('COUNT'), count]) options = {'score_cast_func': score_cast_func} return self.execute_command('ZSCAN', *pieces, **options) def zscan_iter(self, name, match=None, count=None, score_cast_func=float): """ Make an iterator using the ZSCAN command so that the client doesn't need to remember the cursor position. ``match`` allows for filtering the keys by pattern ``count`` allows for hint the minimum number of returns ``score_cast_func`` a callable used to cast the score return value """ cursor = '0' while cursor != 0: cursor, data = self.zscan(name, cursor=cursor, match=match, count=count, score_cast_func=score_cast_func) for item in data: yield item # SET COMMANDS def sadd(self, name, *values): "Add ``value(s)`` to set ``name``" return self.execute_command('SADD', name, *values) def scard(self, name): "Return the number of elements in set ``name``" return self.execute_command('SCARD', name) def sdiff(self, keys, *args): "Return the difference of sets specified by ``keys``" args = list_or_args(keys, args) return self.execute_command('SDIFF', *args) def sdiffstore(self, dest, keys, *args): """ Store the difference of sets specified by ``keys`` into a new set named ``dest``. Returns the number of keys in the new set. """ args = list_or_args(keys, args) return self.execute_command('SDIFFSTORE', dest, *args) def sinter(self, keys, *args): "Return the intersection of sets specified by ``keys``" args = list_or_args(keys, args) return self.execute_command('SINTER', *args) def sinterstore(self, dest, keys, *args): """ Store the intersection of sets specified by ``keys`` into a new set named ``dest``. Returns the number of keys in the new set. """ args = list_or_args(keys, args) return self.execute_command('SINTERSTORE', dest, *args) def sismember(self, name, value): "Return a boolean indicating if ``value`` is a member of set ``name``" return self.execute_command('SISMEMBER', name, value) def smembers(self, name): "Return all members of the set ``name``" return self.execute_command('SMEMBERS', name) def smove(self, src, dst, value): "Move ``value`` from set ``src`` to set ``dst`` atomically" return self.execute_command('SMOVE', src, dst, value) def spop(self, name, count=None): "Remove and return a random member of set ``name``" args = (count is not None) and [count] or [] return self.execute_command('SPOP', name, *args) def srandmember(self, name, number=None): """ If ``number`` is None, returns a random member of set ``name``. If ``number`` is supplied, returns a list of ``number`` random memebers of set ``name``. Note this is only available when running Redis 2.6+. """ args = (number is not None) and [number] or [] return self.execute_command('SRANDMEMBER', name, *args) def srem(self, name, *values): "Remove ``values`` from set ``name``" return self.execute_command('SREM', name, *values) def sunion(self, keys, *args): "Return the union of sets specified by ``keys``" args = list_or_args(keys, args) return self.execute_command('SUNION', *args) def sunionstore(self, dest, keys, *args): """ Store the union of sets specified by ``keys`` into a new set named ``dest``. Returns the number of keys in the new set. """ args = list_or_args(keys, args) return self.execute_command('SUNIONSTORE', dest, *args) # STREAMS COMMANDS def xack(self, name, groupname, *ids): """ Acknowledges the successful processing of one or more messages. name: name of the stream. groupname: name of the consumer group. *ids: message ids to acknowlege. """ return self.execute_command('XACK', name, groupname, *ids) def xadd(self, name, fields, id='*', maxlen=None, approximate=True): """ Add to a stream. name: name of the stream fields: dict of field/value pairs to insert into the stream id: Location to insert this record. By default it is appended. maxlen: truncate old stream members beyond this size approximate: actual stream length may be slightly more than maxlen """ pieces = [] if maxlen is not None: if not isinstance(maxlen, (int, long)) or maxlen < 1: raise DataError('XADD maxlen must be a positive integer') pieces.append(Token.get_token('MAXLEN')) if approximate: pieces.append(Token.get_token('~')) pieces.append(str(maxlen)) pieces.append(id) if not isinstance(fields, dict) or len(fields) == 0: raise DataError('XADD fields must be a non-empty dict') for pair in iteritems(fields): pieces.extend(pair) return self.execute_command('XADD', name, *pieces) def xclaim(self, name, groupname, consumername, min_idle_time, message_ids, idle=None, time=None, retrycount=None, force=False, justid=False): """ Changes the ownership of a pending message. name: name of the stream. groupname: name of the consumer group. consumername: name of a consumer that claims the message. min_idle_time: filter messages that were idle less than this amount of milliseconds message_ids: non-empty list or tuple of message IDs to claim idle: optional. Set the idle time (last time it was delivered) of the message in ms time: optional integer. This is the same as idle but instead of a relative amount of milliseconds, it sets the idle time to a specific Unix time (in milliseconds). retrycount: optional integer. set the retry counter to the specified value. This counter is incremented every time a message is delivered again. force: optional boolean, false by default. Creates the pending message entry in the PEL even if certain specified IDs are not already in the PEL assigned to a different client. justid: optional boolean, false by default. Return just an array of IDs of messages successfully claimed, without returning the actual message """ if not isinstance(min_idle_time, (int, long)) or min_idle_time < 0: raise DataError("XCLAIM min_idle_time must be a non negative " "integer") if not isinstance(message_ids, (list, tuple)) or not message_ids: raise DataError("XCLAIM message_ids must be a non empty list or " "tuple of message IDs to claim") kwargs = {} pieces = [name, groupname, consumername, str(min_idle_time)] pieces.extend(list(message_ids)) if idle is not None: if not isinstance(idle, (int, long)): raise DataError("XCLAIM idle must be an integer") pieces.extend((Token.get_token('IDLE'), str(idle))) if time is not None: if not isinstance(time, (int, long)): raise DataError("XCLAIM time must be an integer") pieces.extend((Token.get_token('TIME'), str(time))) if retrycount is not None: if not isinstance(retrycount, (int, long)): raise DataError("XCLAIM retrycount must be an integer") pieces.extend((Token.get_token('RETRYCOUNT'), str(retrycount))) if force: if not isinstance(force, bool): raise DataError("XCLAIM force must be a boolean") pieces.append(Token.get_token('FORCE')) if justid: if not isinstance(justid, bool): raise DataError("XCLAIM justid must be a boolean") pieces.append(Token.get_token('JUSTID')) kwargs['parse_justid'] = True return self.execute_command('XCLAIM', *pieces, **kwargs) def xdel(self, name, *ids): """ Deletes one or more messages from a stream. name: name of the stream. *ids: message ids to delete. """ return self.execute_command('XDEL', name, *ids) def xgroup_create(self, name, groupname, id='$', mkstream=False): """ Create a new consumer group associated with a stream. name: name of the stream. groupname: name of the consumer group. id: ID of the last item in the stream to consider already delivered. """ pieces = ['XGROUP CREATE', name, groupname, id] if mkstream: pieces.append(Token.get_token('MKSTREAM')) return self.execute_command(*pieces) def xgroup_delconsumer(self, name, groupname, consumername): """ Remove a specific consumer from a consumer group. Returns the number of pending messages that the consumer had before it was deleted. name: name of the stream. groupname: name of the consumer group. consumername: name of consumer to delete """ return self.execute_command('XGROUP DELCONSUMER', name, groupname, consumername) def xgroup_destroy(self, name, groupname): """ Destroy a consumer group. name: name of the stream. groupname: name of the consumer group. """ return self.execute_command('XGROUP DESTROY', name, groupname) def xgroup_setid(self, name, groupname, id): """ Set the consumer group last delivered ID to something else. name: name of the stream. groupname: name of the consumer group. id: ID of the last item in the stream to consider already delivered. """ return self.execute_command('XGROUP SETID', name, groupname, id) def xinfo_consumers(self, name, groupname): """ Returns general information about the consumers in the group. name: name of the stream. groupname: name of the consumer group. """ return self.execute_command('XINFO CONSUMERS', name, groupname) def xinfo_groups(self, name): """ Returns general information about the consumer groups of the stream. name: name of the stream. """ return self.execute_command('XINFO GROUPS', name) def xinfo_stream(self, name): """ Returns general information about the stream. name: name of the stream. """ return self.execute_command('XINFO STREAM', name) def xlen(self, name): """ Returns the number of elements in a given stream. """ return self.execute_command('XLEN', name) def xpending(self, name, groupname): """ Returns information about pending messages of a group. name: name of the stream. groupname: name of the consumer group. """ return self.execute_command('XPENDING', name, groupname) def xpending_range(self, name, groupname, min='-', max='+', count=-1, consumername=None): """ Returns information about pending messages, in a range. name: name of the stream. groupname: name of the consumer group. start: first stream ID. defaults to '-', meaning the earliest available. finish: last stream ID. defaults to '+', meaning the latest available. count: if set, only return this many items, beginning with the earliest available. consumername: name of a consumer to filter by (optional). """ pieces = [name, groupname] if min is not None or max is not None or count is not None: if min is None or max is None or count is None: raise DataError("XPENDING must be provided with min, max " "and count parameters, or none of them. ") if not isinstance(count, (int, long)) or count < -1: raise DataError("XPENDING count must be a integer >= -1") pieces.extend((min, max, str(count))) if consumername is not None: if min is None or max is None or count is None: raise DataError("if XPENDING is provided with consumername," " it must be provided with min, max and" " count parameters") pieces.append(consumername) return self.execute_command('XPENDING', *pieces, parse_detail=True) def xrange(self, name, min='-', max='+', count=None): """ Read stream values within an interval. name: name of the stream. start: first stream ID. defaults to '-', meaning the earliest available. finish: last stream ID. defaults to '+', meaning the latest available. count: if set, only return this many items, beginning with the earliest available. """ pieces = [min, max] if count is not None: if not isinstance(count, (int, long)) or count < 1: raise DataError('XRANGE count must be a positive integer') pieces.append(Token.get_token('COUNT')) pieces.append(str(count)) return self.execute_command('XRANGE', name, *pieces) def xread(self, streams, count=None, block=None): """ Block and monitor multiple streams for new data. streams: a dict of stream names to stream IDs, where IDs indicate the last ID already seen. count: if set, only return this many items, beginning with the earliest available. block: number of milliseconds to wait, if nothing already present. """ pieces = [] if block is not None: if not isinstance(block, (int, long)) or block < 0: raise DataError('XREAD block must be a non-negative integer') pieces.append(Token.get_token('BLOCK')) pieces.append(str(block)) if count is not None: if not isinstance(count, (int, long)) or count < 1: raise DataError('XREAD count must be a positive integer') pieces.append(Token.get_token('COUNT')) pieces.append(str(count)) if not isinstance(streams, dict) or len(streams) == 0: raise DataError('XREAD streams must be a non empty dict') pieces.append(Token.get_token('STREAMS')) keys, values = izip(*iteritems(streams)) pieces.extend(keys) pieces.extend(values) return self.execute_command('XREAD', *pieces) def xreadgroup(self, groupname, consumername, streams, count=None, block=None): """ Read from a stream via a consumer group. groupname: name of the consumer group. consumername: name of the requesting consumer. streams: a dict of stream names to stream IDs, where IDs indicate the last ID already seen. count: if set, only return this many items, beginning with the earliest available. block: number of milliseconds to wait, if nothing already present. """ pieces = [Token.get_token('GROUP'), groupname, consumername] if count is not None: if not isinstance(count, (int, long)) or count < 1: raise DataError("XREADGROUP count must be a positive integer") pieces.append(Token.get_token("COUNT")) pieces.append(str(count)) if block is not None: if not isinstance(block, (int, long)) or block < 0: raise DataError("XREADGROUP block must be a non-negative " "integer") pieces.append(Token.get_token("BLOCK")) pieces.append(str(block)) if not isinstance(streams, dict) or len(streams) == 0: raise DataError('XREADGROUP streams must be a non empty dict') pieces.append(Token.get_token('STREAMS')) pieces.extend(streams.keys()) pieces.extend(streams.values()) return self.execute_command('XREADGROUP', *pieces) def xrevrange(self, name, max='+', min='-', count=None): """ Read stream values within an interval, in reverse order. name: name of the stream start: first stream ID. defaults to '+', meaning the latest available. finish: last stream ID. defaults to '-', meaning the earliest available. count: if set, only return this many items, beginning with the latest available. """ pieces = [max, min] if count is not None: if not isinstance(count, (int, long)) or count < 1: raise DataError('XREVRANGE count must be a positive integer') pieces.append(Token.get_token('COUNT')) pieces.append(str(count)) return self.execute_command('XREVRANGE', name, *pieces) def xtrim(self, name, maxlen, approximate=True): """ Trims old messages from a stream. name: name of the stream. maxlen: truncate old stream messages beyond this size approximate: actual stream length may be slightly more than maxlen """ pieces = [Token.get_token('MAXLEN')] if approximate: pieces.append(Token.get_token('~')) pieces.append(maxlen) return self.execute_command('XTRIM', name, *pieces) # SORTED SET COMMANDS def zadd(self, name, mapping, nx=False, xx=False, ch=False, incr=False): """ Set any number of element-name, score pairs to the key ``name``. Pairs are specified as a dict of element-names keys to score values. ``nx`` forces ZADD to only create new elements and not to update scores for elements that already exist. ``xx`` forces ZADD to only update scores of elements that already exist. New elements will not be added. ``ch`` modifies the return value to be the numbers of elements changed. Changed elements include new elements that were added and elements whose scores changed. ``incr`` modifies ZADD to behave like ZINCRBY. In this mode only a single element/score pair can be specified and the score is the amount the existing score will be incremented by. When using this mode the return value of ZADD will be the new score of the element. The return value of ZADD varies based on the mode specified. With no options, ZADD returns the number of new elements added to the sorted set. """ if not mapping: raise DataError("ZADD requires at least one element/score pair") if nx and xx: raise DataError("ZADD allows either 'nx' or 'xx', not both") if incr and len(mapping) != 1: raise DataError("ZADD option 'incr' only works when passing a " "single element/score pair") pieces = [] options = {} if nx: pieces.append(Token.get_token('NX')) if xx: pieces.append(Token.get_token('XX')) if ch: pieces.append(Token.get_token('CH')) if incr: pieces.append(Token.get_token('INCR')) options['as_score'] = True for pair in iteritems(mapping): pieces.append(pair[1]) pieces.append(pair[0]) return self.execute_command('ZADD', name, *pieces, **options) def zcard(self, name): "Return the number of elements in the sorted set ``name``" return self.execute_command('ZCARD', name) def zcount(self, name, min, max): """ Returns the number of elements in the sorted set at key ``name`` with a score between ``min`` and ``max``. """ return self.execute_command('ZCOUNT', name, min, max) def zincrby(self, name, amount, value): "Increment the score of ``value`` in sorted set ``name`` by ``amount``" return self.execute_command('ZINCRBY', name, amount, value) def zinterstore(self, dest, keys, aggregate=None): """ Intersect multiple sorted sets specified by ``keys`` into a new sorted set, ``dest``. Scores in the destination will be aggregated based on the ``aggregate``, or SUM if none is provided. """ return self._zaggregate('ZINTERSTORE', dest, keys, aggregate) def zlexcount(self, name, min, max): """ Return the number of items in the sorted set ``name`` between the lexicographical range ``min`` and ``max``. """ return self.execute_command('ZLEXCOUNT', name, min, max) def zpopmax(self, name, count=None): """ Remove and return up to ``count`` members with the highest scores from the sorted set ``name``. """ args = (count is not None) and [count] or [] options = { 'withscores': True } return self.execute_command('ZPOPMAX', name, *args, **options) def zpopmin(self, name, count=None): """ Remove and return up to ``count`` members with the lowest scores from the sorted set ``name``. """ args = (count is not None) and [count] or [] options = { 'withscores': True } return self.execute_command('ZPOPMIN', name, *args, **options) def bzpopmax(self, keys, timeout=0): """ ZPOPMAX a value off of the first non-empty sorted set named in the ``keys`` list. If none of the sorted sets in ``keys`` has a value to ZPOPMAX, then block for ``timeout`` seconds, or until a member gets added to one of the sorted sets. If timeout is 0, then block indefinitely. """ if timeout is None: timeout = 0 keys = list_or_args(keys, None) keys.append(timeout) return self.execute_command('BZPOPMAX', *keys) def bzpopmin(self, keys, timeout=0): """ ZPOPMIN a value off of the first non-empty sorted set named in the ``keys`` list. If none of the sorted sets in ``keys`` has a value to ZPOPMIN, then block for ``timeout`` seconds, or until a member gets added to one of the sorted sets. If timeout is 0, then block indefinitely. """ if timeout is None: timeout = 0 keys = list_or_args(keys, None) keys.append(timeout) return self.execute_command('BZPOPMIN', *keys) def zrange(self, name, start, end, desc=False, withscores=False, score_cast_func=float): """ Return a range of values from sorted set ``name`` between ``start`` and ``end`` sorted in ascending order. ``start`` and ``end`` can be negative, indicating the end of the range. ``desc`` a boolean indicating whether to sort the results descendingly ``withscores`` indicates to return the scores along with the values. The return type is a list of (value, score) pairs ``score_cast_func`` a callable used to cast the score return value """ if desc: return self.zrevrange(name, start, end, withscores, score_cast_func) pieces = ['ZRANGE', name, start, end] if withscores: pieces.append(Token.get_token('WITHSCORES')) options = { 'withscores': withscores, 'score_cast_func': score_cast_func } return self.execute_command(*pieces, **options) def zrangebylex(self, name, min, max, start=None, num=None): """ Return the lexicographical range of values from sorted set ``name`` between ``min`` and ``max``. If ``start`` and ``num`` are specified, then return a slice of the range. """ if (start is not None and num is None) or \ (num is not None and start is None): raise DataError("``start`` and ``num`` must both be specified") pieces = ['ZRANGEBYLEX', name, min, max] if start is not None and num is not None: pieces.extend([Token.get_token('LIMIT'), start, num]) return self.execute_command(*pieces) def zrevrangebylex(self, name, max, min, start=None, num=None): """ Return the reversed lexicographical range of values from sorted set ``name`` between ``max`` and ``min``. If ``start`` and ``num`` are specified, then return a slice of the range. """ if (start is not None and num is None) or \ (num is not None and start is None): raise DataError("``start`` and ``num`` must both be specified") pieces = ['ZREVRANGEBYLEX', name, max, min] if start is not None and num is not None: pieces.extend([Token.get_token('LIMIT'), start, num]) return self.execute_command(*pieces) def zrangebyscore(self, name, min, max, start=None, num=None, withscores=False, score_cast_func=float): """ Return a range of values from the sorted set ``name`` with scores between ``min`` and ``max``. If ``start`` and ``num`` are specified, then return a slice of the range. ``withscores`` indicates to return the scores along with the values. The return type is a list of (value, score) pairs `score_cast_func`` a callable used to cast the score return value """ if (start is not None and num is None) or \ (num is not None and start is None): raise DataError("``start`` and ``num`` must both be specified") pieces = ['ZRANGEBYSCORE', name, min, max] if start is not None and num is not None: pieces.extend([Token.get_token('LIMIT'), start, num]) if withscores: pieces.append(Token.get_token('WITHSCORES')) options = { 'withscores': withscores, 'score_cast_func': score_cast_func } return self.execute_command(*pieces, **options) def zrank(self, name, value): """ Returns a 0-based value indicating the rank of ``value`` in sorted set ``name`` """ return self.execute_command('ZRANK', name, value) def zrem(self, name, *values): "Remove member ``values`` from sorted set ``name``" return self.execute_command('ZREM', name, *values) def zremrangebylex(self, name, min, max): """ Remove all elements in the sorted set ``name`` between the lexicographical range specified by ``min`` and ``max``. Returns the number of elements removed. """ return self.execute_command('ZREMRANGEBYLEX', name, min, max) def zremrangebyrank(self, name, min, max): """ Remove all elements in the sorted set ``name`` with ranks between ``min`` and ``max``. Values are 0-based, ordered from smallest score to largest. Values can be negative indicating the highest scores. Returns the number of elements removed """ return self.execute_command('ZREMRANGEBYRANK', name, min, max) def zremrangebyscore(self, name, min, max): """ Remove all elements in the sorted set ``name`` with scores between ``min`` and ``max``. Returns the number of elements removed. """ return self.execute_command('ZREMRANGEBYSCORE', name, min, max) def zrevrange(self, name, start, end, withscores=False, score_cast_func=float): """ Return a range of values from sorted set ``name`` between ``start`` and ``end`` sorted in descending order. ``start`` and ``end`` can be negative, indicating the end of the range. ``withscores`` indicates to return the scores along with the values The return type is a list of (value, score) pairs ``score_cast_func`` a callable used to cast the score return value """ pieces = ['ZREVRANGE', name, start, end] if withscores: pieces.append(Token.get_token('WITHSCORES')) options = { 'withscores': withscores, 'score_cast_func': score_cast_func } return self.execute_command(*pieces, **options) def zrevrangebyscore(self, name, max, min, start=None, num=None, withscores=False, score_cast_func=float): """ Return a range of values from the sorted set ``name`` with scores between ``min`` and ``max`` in descending order. If ``start`` and ``num`` are specified, then return a slice of the range. ``withscores`` indicates to return the scores along with the values. The return type is a list of (value, score) pairs ``score_cast_func`` a callable used to cast the score return value """ if (start is not None and num is None) or \ (num is not None and start is None): raise DataError("``start`` and ``num`` must both be specified") pieces = ['ZREVRANGEBYSCORE', name, max, min] if start is not None and num is not None: pieces.extend([Token.get_token('LIMIT'), start, num]) if withscores: pieces.append(Token.get_token('WITHSCORES')) options = { 'withscores': withscores, 'score_cast_func': score_cast_func } return self.execute_command(*pieces, **options) def zrevrank(self, name, value): """ Returns a 0-based value indicating the descending rank of ``value`` in sorted set ``name`` """ return self.execute_command('ZREVRANK', name, value) def zscore(self, name, value): "Return the score of element ``value`` in sorted set ``name``" return self.execute_command('ZSCORE', name, value) def zunionstore(self, dest, keys, aggregate=None): """ Union multiple sorted sets specified by ``keys`` into a new sorted set, ``dest``. Scores in the destination will be aggregated based on the ``aggregate``, or SUM if none is provided. """ return self._zaggregate('ZUNIONSTORE', dest, keys, aggregate) def _zaggregate(self, command, dest, keys, aggregate=None): pieces = [command, dest, len(keys)] if isinstance(keys, dict): keys, weights = iterkeys(keys), itervalues(keys) else: weights = None pieces.extend(keys) if weights: pieces.append(Token.get_token('WEIGHTS')) pieces.extend(weights) if aggregate: pieces.append(Token.get_token('AGGREGATE')) pieces.append(aggregate) return self.execute_command(*pieces) # HYPERLOGLOG COMMANDS def pfadd(self, name, *values): "Adds the specified elements to the specified HyperLogLog." return self.execute_command('PFADD', name, *values) def pfcount(self, *sources): """ Return the approximated cardinality of the set observed by the HyperLogLog at key(s). """ return self.execute_command('PFCOUNT', *sources) def pfmerge(self, dest, *sources): "Merge N different HyperLogLogs into a single one." return self.execute_command('PFMERGE', dest, *sources) # HASH COMMANDS def hdel(self, name, *keys): "Delete ``keys`` from hash ``name``" return self.execute_command('HDEL', name, *keys) def hexists(self, name, key): "Returns a boolean indicating if ``key`` exists within hash ``name``" return self.execute_command('HEXISTS', name, key) def hget(self, name, key): "Return the value of ``key`` within the hash ``name``" return self.execute_command('HGET', name, key) def hgetall(self, name): "Return a Python dict of the hash's name/value pairs" return self.execute_command('HGETALL', name) def hincrby(self, name, key, amount=1): "Increment the value of ``key`` in hash ``name`` by ``amount``" return self.execute_command('HINCRBY', name, key, amount) def hincrbyfloat(self, name, key, amount=1.0): """ Increment the value of ``key`` in hash ``name`` by floating ``amount`` """ return self.execute_command('HINCRBYFLOAT', name, key, amount) def hkeys(self, name): "Return the list of keys within hash ``name``" return self.execute_command('HKEYS', name) def hlen(self, name): "Return the number of elements in hash ``name``" return self.execute_command('HLEN', name) def hset(self, name, key, value): """ Set ``key`` to ``value`` within hash ``name`` Returns 1 if HSET created a new field, otherwise 0 """ return self.execute_command('HSET', name, key, value) def hsetnx(self, name, key, value): """ Set ``key`` to ``value`` within hash ``name`` if ``key`` does not exist. Returns 1 if HSETNX created a field, otherwise 0. """ return self.execute_command('HSETNX', name, key, value) def hmset(self, name, mapping): """ Set key to value within hash ``name`` for each corresponding key and value from the ``mapping`` dict. """ if not mapping: raise DataError("'hmset' with 'mapping' of length 0") items = [] for pair in iteritems(mapping): items.extend(pair) return self.execute_command('HMSET', name, *items) def hmget(self, name, keys, *args): "Returns a list of values ordered identically to ``keys``" args = list_or_args(keys, args) return self.execute_command('HMGET', name, *args) def hvals(self, name): "Return the list of values within hash ``name``" return self.execute_command('HVALS', name) def hstrlen(self, name, key): """ Return the number of bytes stored in the value of ``key`` within hash ``name`` """ return self.execute_command('HSTRLEN', name, key) def publish(self, channel, message): """ Publish ``message`` on ``channel``. Returns the number of subscribers the message was delivered to. """ return self.execute_command('PUBLISH', channel, message) def pubsub_channels(self, pattern='*'): """ Return a list of channels that have at least one subscriber """ return self.execute_command('PUBSUB CHANNELS', pattern) def pubsub_numpat(self): """ Returns the number of subscriptions to patterns """ return self.execute_command('PUBSUB NUMPAT') def pubsub_numsub(self, *args): """ Return a list of (channel, number of subscribers) tuples for each channel given in ``*args`` """ return self.execute_command('PUBSUB NUMSUB', *args) def cluster(self, cluster_arg, *args): return self.execute_command('CLUSTER %s' % cluster_arg.upper(), *args) def eval(self, script, numkeys, *keys_and_args): """ Execute the Lua ``script``, specifying the ``numkeys`` the script will touch and the key names and argument values in ``keys_and_args``. Returns the result of the script. In practice, use the object returned by ``register_script``. This function exists purely for Redis API completion. """ return self.execute_command('EVAL', script, numkeys, *keys_and_args) def evalsha(self, sha, numkeys, *keys_and_args): """ Use the ``sha`` to execute a Lua script already registered via EVAL or SCRIPT LOAD. Specify the ``numkeys`` the script will touch and the key names and argument values in ``keys_and_args``. Returns the result of the script. In practice, use the object returned by ``register_script``. This function exists purely for Redis API completion. """ return self.execute_command('EVALSHA', sha, numkeys, *keys_and_args) def script_exists(self, *args): """ Check if a script exists in the script cache by specifying the SHAs of each script as ``args``. Returns a list of boolean values indicating if if each already script exists in the cache. """ return self.execute_command('SCRIPT EXISTS', *args) def script_flush(self): "Flush all scripts from the script cache" return self.execute_command('SCRIPT FLUSH') def script_kill(self): "Kill the currently executing Lua script" return self.execute_command('SCRIPT KILL') def script_load(self, script): "Load a Lua ``script`` into the script cache. Returns the SHA." return self.execute_command('SCRIPT LOAD', script) def register_script(self, script): """ Register a Lua ``script`` specifying the ``keys`` it will touch. Returns a Script object that is callable and hides the complexity of deal with scripts, keys, and shas. This is the preferred way to work with Lua scripts. """ return Script(self, script) # GEO COMMANDS def geoadd(self, name, *values): """ Add the specified geospatial items to the specified key identified by the ``name`` argument. The Geospatial items are given as ordered members of the ``values`` argument, each item or place is formed by the triad longitude, latitude and name. """ if len(values) % 3 != 0: raise DataError("GEOADD requires places with lon, lat and name" " values") return self.execute_command('GEOADD', name, *values) def geodist(self, name, place1, place2, unit=None): """ Return the distance between ``place1`` and ``place2`` members of the ``name`` key. The units must be one of the following : m, km mi, ft. By default meters are used. """ pieces = [name, place1, place2] if unit and unit not in ('m', 'km', 'mi', 'ft'): raise DataError("GEODIST invalid unit") elif unit: pieces.append(unit) return self.execute_command('GEODIST', *pieces) def geohash(self, name, *values): """ Return the geo hash string for each item of ``values`` members of the specified key identified by the ``name`` argument. """ return self.execute_command('GEOHASH', name, *values) def geopos(self, name, *values): """ Return the positions of each item of ``values`` as members of the specified key identified by the ``name`` argument. Each position is represented by the pairs lon and lat. """ return self.execute_command('GEOPOS', name, *values) def georadius(self, name, longitude, latitude, radius, unit=None, withdist=False, withcoord=False, withhash=False, count=None, sort=None, store=None, store_dist=None): """ Return the members of the specified key identified by the ``name`` argument which are within the borders of the area specified with the ``latitude`` and ``longitude`` location and the maximum distance from the center specified by the ``radius`` value. The units must be one of the following : m, km mi, ft. By default ``withdist`` indicates to return the distances of each place. ``withcoord`` indicates to return the latitude and longitude of each place. ``withhash`` indicates to return the geohash string of each place. ``count`` indicates to return the number of elements up to N. ``sort`` indicates to return the places in a sorted way, ASC for nearest to fairest and DESC for fairest to nearest. ``store`` indicates to save the places names in a sorted set named with a specific key, each element of the destination sorted set is populated with the score got from the original geo sorted set. ``store_dist`` indicates to save the places names in a sorted set named with a specific key, instead of ``store`` the sorted set destination score is set with the distance. """ return self._georadiusgeneric('GEORADIUS', name, longitude, latitude, radius, unit=unit, withdist=withdist, withcoord=withcoord, withhash=withhash, count=count, sort=sort, store=store, store_dist=store_dist) def georadiusbymember(self, name, member, radius, unit=None, withdist=False, withcoord=False, withhash=False, count=None, sort=None, store=None, store_dist=None): """ This command is exactly like ``georadius`` with the sole difference that instead of taking, as the center of the area to query, a longitude and latitude value, it takes the name of a member already existing inside the geospatial index represented by the sorted set. """ return self._georadiusgeneric('GEORADIUSBYMEMBER', name, member, radius, unit=unit, withdist=withdist, withcoord=withcoord, withhash=withhash, count=count, sort=sort, store=store, store_dist=store_dist) def _georadiusgeneric(self, command, *args, **kwargs): pieces = list(args) if kwargs['unit'] and kwargs['unit'] not in ('m', 'km', 'mi', 'ft'): raise DataError("GEORADIUS invalid unit") elif kwargs['unit']: pieces.append(kwargs['unit']) else: pieces.append('m',) for token in ('withdist', 'withcoord', 'withhash'): if kwargs[token]: pieces.append(Token(token.upper())) if kwargs['count']: pieces.extend([Token('COUNT'), kwargs['count']]) if kwargs['sort'] and kwargs['sort'] not in ('ASC', 'DESC'): raise DataError("GEORADIUS invalid sort") elif kwargs['sort']: pieces.append(Token(kwargs['sort'])) if kwargs['store'] and kwargs['store_dist']: raise DataError("GEORADIUS store and store_dist cant be set" " together") if kwargs['store']: pieces.extend([Token('STORE'), kwargs['store']]) if kwargs['store_dist']: pieces.extend([Token('STOREDIST'), kwargs['store_dist']]) return self.execute_command(command, *pieces, **kwargs) StrictRedis = Redis class PubSub(object): """ PubSub provides publish, subscribe and listen support to Redis channels. After subscribing to one or more channels, the listen() method will block until a message arrives on one of the subscribed channels. That message will be returned and it's safe to start listening again. """ PUBLISH_MESSAGE_TYPES = ('message', 'pmessage') UNSUBSCRIBE_MESSAGE_TYPES = ('unsubscribe', 'punsubscribe') def __init__(self, connection_pool, shard_hint=None, ignore_subscribe_messages=False): self.connection_pool = connection_pool self.shard_hint = shard_hint self.ignore_subscribe_messages = ignore_subscribe_messages self.connection = None # we need to know the encoding options for this connection in order # to lookup channel and pattern names for callback handlers. self.encoder = self.connection_pool.get_encoder() self.reset() def __del__(self): try: # if this object went out of scope prior to shutting down # subscriptions, close the connection manually before # returning it to the connection pool self.reset() except Exception: pass def reset(self): if self.connection: self.connection.disconnect() self.connection.clear_connect_callbacks() self.connection_pool.release(self.connection) self.connection = None self.channels = {} self.patterns = {} def close(self): self.reset() def on_connect(self, connection): "Re-subscribe to any channels and patterns previously subscribed to" # NOTE: for python3, we can't pass bytestrings as keyword arguments # so we need to decode channel/pattern names back to unicode strings # before passing them to [p]subscribe. if self.channels: channels = {} for k, v in iteritems(self.channels): channels[self.encoder.decode(k, force=True)] = v self.subscribe(**channels) if self.patterns: patterns = {} for k, v in iteritems(self.patterns): patterns[self.encoder.decode(k, force=True)] = v self.psubscribe(**patterns) @property def subscribed(self): "Indicates if there are subscriptions to any channels or patterns" return bool(self.channels or self.patterns) def execute_command(self, *args, **kwargs): "Execute a publish/subscribe command" # NOTE: don't parse the response in this function -- it could pull a # legitimate message off the stack if the connection is already # subscribed to one or more channels if self.connection is None: self.connection = self.connection_pool.get_connection( 'pubsub', self.shard_hint ) # register a callback that re-subscribes to any channels we # were listening to when we were disconnected self.connection.register_connect_callback(self.on_connect) connection = self.connection self._execute(connection, connection.send_command, *args) def _execute(self, connection, command, *args): try: return command(*args) except (ConnectionError, TimeoutError) as e: connection.disconnect() if not connection.retry_on_timeout and isinstance(e, TimeoutError): raise # Connect manually here. If the Redis server is down, this will # fail and raise a ConnectionError as desired. connection.connect() # the ``on_connect`` callback should haven been called by the # connection to resubscribe us to any channels and patterns we were # previously listening to return command(*args) def parse_response(self, block=True, timeout=0): "Parse the response from a publish/subscribe command" connection = self.connection if connection is None: raise RuntimeError( 'pubsub connection not set: ' 'did you forget to call subscribe() or psubscribe()?') if not block and not connection.can_read(timeout=timeout): return None return self._execute(connection, connection.read_response) def _normalize_keys(self, data): """ normalize channel/pattern names to be either bytes or strings based on whether responses are automatically decoded. this saves us from coercing the value for each message coming in. """ encode = self.encoder.encode decode = self.encoder.decode return {decode(encode(k)): v for k, v in iteritems(data)} def psubscribe(self, *args, **kwargs): """ Subscribe to channel patterns. Patterns supplied as keyword arguments expect a pattern name as the key and a callable as the value. A pattern's callable will be invoked automatically when a message is received on that pattern rather than producing a message via ``listen()``. """ if args: args = list_or_args(args[0], args[1:]) new_patterns = dict.fromkeys(args) new_patterns.update(kwargs) ret_val = self.execute_command('PSUBSCRIBE', *iterkeys(new_patterns)) # update the patterns dict AFTER we send the command. we don't want to # subscribe twice to these patterns, once for the command and again # for the reconnection. self.patterns.update(self._normalize_keys(new_patterns)) return ret_val def punsubscribe(self, *args): """ Unsubscribe from the supplied patterns. If empy, unsubscribe from all patterns. """ if args: args = list_or_args(args[0], args[1:]) return self.execute_command('PUNSUBSCRIBE', *args) def subscribe(self, *args, **kwargs): """ Subscribe to channels. Channels supplied as keyword arguments expect a channel name as the key and a callable as the value. A channel's callable will be invoked automatically when a message is received on that channel rather than producing a message via ``listen()`` or ``get_message()``. """ if args: args = list_or_args(args[0], args[1:]) new_channels = dict.fromkeys(args) new_channels.update(kwargs) ret_val = self.execute_command('SUBSCRIBE', *iterkeys(new_channels)) # update the channels dict AFTER we send the command. we don't want to # subscribe twice to these channels, once for the command and again # for the reconnection. self.channels.update(self._normalize_keys(new_channels)) return ret_val def unsubscribe(self, *args): """ Unsubscribe from the supplied channels. If empty, unsubscribe from all channels """ if args: args = list_or_args(args[0], args[1:]) return self.execute_command('UNSUBSCRIBE', *args) def listen(self): "Listen for messages on channels this client has been subscribed to" while self.subscribed: response = self.handle_message(self.parse_response(block=True)) if response is not None: yield response def get_message(self, ignore_subscribe_messages=False, timeout=0): """ Get the next message if one is available, otherwise None. If timeout is specified, the system will wait for `timeout` seconds before returning. Timeout should be specified as a floating point number. """ response = self.parse_response(block=False, timeout=timeout) if response: return self.handle_message(response, ignore_subscribe_messages) return None def ping(self, message=None): """ Ping the Redis server """ message = '' if message is None else message return self.execute_command('PING', message) def handle_message(self, response, ignore_subscribe_messages=False): """ Parses a pub/sub message. If the channel or pattern was subscribed to with a message handler, the handler is invoked instead of a parsed message being returned. """ message_type = nativestr(response[0]) if message_type == 'pmessage': message = { 'type': message_type, 'pattern': response[1], 'channel': response[2], 'data': response[3] } elif message_type == 'pong': message = { 'type': message_type, 'pattern': None, 'channel': None, 'data': response[1] } else: message = { 'type': message_type, 'pattern': None, 'channel': response[1], 'data': response[2] } # if this is an unsubscribe message, remove it from memory if message_type in self.UNSUBSCRIBE_MESSAGE_TYPES: subscribed_dict = None if message_type == 'punsubscribe': subscribed_dict = self.patterns else: subscribed_dict = self.channels try: del subscribed_dict[message['channel']] except KeyError: pass if message_type in self.PUBLISH_MESSAGE_TYPES: # if there's a message handler, invoke it handler = None if message_type == 'pmessage': handler = self.patterns.get(message['pattern'], None) else: handler = self.channels.get(message['channel'], None) if handler: handler(message) return None elif message_type != 'pong': # this is a subscribe/unsubscribe message. ignore if we don't # want them if ignore_subscribe_messages or self.ignore_subscribe_messages: return None return message def run_in_thread(self, sleep_time=0, daemon=False): for channel, handler in iteritems(self.channels): if handler is None: raise PubSubError("Channel: '%s' has no handler registered" % channel) for pattern, handler in iteritems(self.patterns): if handler is None: raise PubSubError("Pattern: '%s' has no handler registered" % pattern) thread = PubSubWorkerThread(self, sleep_time, daemon=daemon) thread.start() return thread class PubSubWorkerThread(threading.Thread): def __init__(self, pubsub, sleep_time, daemon=False): super(PubSubWorkerThread, self).__init__() self.daemon = daemon self.pubsub = pubsub self.sleep_time = sleep_time self._running = False def run(self): if self._running: return self._running = True pubsub = self.pubsub sleep_time = self.sleep_time while pubsub.subscribed: pubsub.get_message(ignore_subscribe_messages=True, timeout=sleep_time) pubsub.close() self._running = False def stop(self): # stopping simply unsubscribes from all channels and patterns. # the unsubscribe responses that are generated will short circuit # the loop in run(), calling pubsub.close() to clean up the connection self.pubsub.unsubscribe() self.pubsub.punsubscribe() class Pipeline(Redis): """ Pipelines provide a way to transmit multiple commands to the Redis server in one transmission. This is convenient for batch processing, such as saving all the values in a list to Redis. All commands executed within a pipeline are wrapped with MULTI and EXEC calls. This guarantees all commands executed in the pipeline will be executed atomically. Any command raising an exception does *not* halt the execution of subsequent commands in the pipeline. Instead, the exception is caught and its instance is placed into the response list returned by execute(). Code iterating over the response list should be able to deal with an instance of an exception as a potential value. In general, these will be ResponseError exceptions, such as those raised when issuing a command on a key of a different datatype. """ UNWATCH_COMMANDS = {'DISCARD', 'EXEC', 'UNWATCH'} def __init__(self, connection_pool, response_callbacks, transaction, shard_hint): self.connection_pool = connection_pool self.connection = None self.response_callbacks = response_callbacks self.transaction = transaction self.shard_hint = shard_hint self.watching = False self.reset() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.reset() def __del__(self): try: self.reset() except Exception: pass def __len__(self): return len(self.command_stack) def reset(self): self.command_stack = [] self.scripts = set() # make sure to reset the connection state in the event that we were # watching something if self.watching and self.connection: try: # call this manually since our unwatch or # immediate_execute_command methods can call reset() self.connection.send_command('UNWATCH') self.connection.read_response() except ConnectionError: # disconnect will also remove any previous WATCHes self.connection.disconnect() # clean up the other instance attributes self.watching = False self.explicit_transaction = False # we can safely return the connection to the pool here since we're # sure we're no longer WATCHing anything if self.connection: self.connection_pool.release(self.connection) self.connection = None def multi(self): """ Start a transactional block of the pipeline after WATCH commands are issued. End the transactional block with `execute`. """ if self.explicit_transaction: raise RedisError('Cannot issue nested calls to MULTI') if self.command_stack: raise RedisError('Commands without an initial WATCH have already ' 'been issued') self.explicit_transaction = True def execute_command(self, *args, **kwargs): if (self.watching or args[0] == 'WATCH') and \ not self.explicit_transaction: return self.immediate_execute_command(*args, **kwargs) return self.pipeline_execute_command(*args, **kwargs) def immediate_execute_command(self, *args, **options): """ Execute a command immediately, but don't auto-retry on a ConnectionError if we're already WATCHing a variable. Used when issuing WATCH or subsequent commands retrieving their values but before MULTI is called. """ command_name = args[0] conn = self.connection # if this is the first call, we need a connection if not conn: conn = self.connection_pool.get_connection(command_name, self.shard_hint) self.connection = conn try: conn.send_command(*args) return self.parse_response(conn, command_name, **options) except (ConnectionError, TimeoutError) as e: conn.disconnect() if not conn.retry_on_timeout and isinstance(e, TimeoutError): raise # if we're not already watching, we can safely retry the command try: if not self.watching: conn.send_command(*args) return self.parse_response(conn, command_name, **options) except ConnectionError: # the retry failed so cleanup. conn.disconnect() self.reset() raise def pipeline_execute_command(self, *args, **options): """ Stage a command to be executed when execute() is next called Returns the current Pipeline object back so commands can be chained together, such as: pipe = pipe.set('foo', 'bar').incr('baz').decr('bang') At some other point, you can then run: pipe.execute(), which will execute all commands queued in the pipe. """ self.command_stack.append((args, options)) return self def _execute_transaction(self, connection, commands, raise_on_error): cmds = chain([(('MULTI', ), {})], commands, [(('EXEC', ), {})]) all_cmds = connection.pack_commands([args for args, options in cmds if EMPTY_RESPONSE not in options]) connection.send_packed_command(all_cmds) errors = [] # parse off the response for MULTI # NOTE: we need to handle ResponseErrors here and continue # so that we read all the additional command messages from # the socket try: self.parse_response(connection, '_') except ResponseError: errors.append((0, sys.exc_info()[1])) # and all the other commands for i, command in enumerate(commands): if EMPTY_RESPONSE in command[1]: errors.append((i, command[1][EMPTY_RESPONSE])) else: try: self.parse_response(connection, '_') except ResponseError: ex = sys.exc_info()[1] self.annotate_exception(ex, i + 1, command[0]) errors.append((i, ex)) # parse the EXEC. try: response = self.parse_response(connection, '_') except ExecAbortError: if self.explicit_transaction: self.immediate_execute_command('DISCARD') if errors: raise errors[0][1] raise sys.exc_info()[1] if response is None: raise WatchError("Watched variable changed.") # put any parse errors into the response for i, e in errors: response.insert(i, e) if len(response) != len(commands): self.connection.disconnect() raise ResponseError("Wrong number of response items from " "pipeline execution") # find any errors in the response and raise if necessary if raise_on_error: self.raise_first_error(commands, response) # We have to run response callbacks manually data = [] for r, cmd in izip(response, commands): if not isinstance(r, Exception): args, options = cmd command_name = args[0] if command_name in self.response_callbacks: r = self.response_callbacks[command_name](r, **options) data.append(r) return data def _execute_pipeline(self, connection, commands, raise_on_error): # build up all commands into a single request to increase network perf all_cmds = connection.pack_commands([args for args, _ in commands]) connection.send_packed_command(all_cmds) response = [] for args, options in commands: try: response.append( self.parse_response(connection, args[0], **options)) except ResponseError: response.append(sys.exc_info()[1]) if raise_on_error: self.raise_first_error(commands, response) return response def raise_first_error(self, commands, response): for i, r in enumerate(response): if isinstance(r, ResponseError): self.annotate_exception(r, i + 1, commands[i][0]) raise r def annotate_exception(self, exception, number, command): cmd = ' '.join(imap(safe_unicode, command)) msg = 'Command # %d (%s) of pipeline caused error: %s' % ( number, cmd, safe_unicode(exception.args[0])) exception.args = (msg,) + exception.args[1:] def parse_response(self, connection, command_name, **options): result = Redis.parse_response( self, connection, command_name, **options) if command_name in self.UNWATCH_COMMANDS: self.watching = False elif command_name == 'WATCH': self.watching = True return result def load_scripts(self): # make sure all scripts that are about to be run on this pipeline exist scripts = list(self.scripts) immediate = self.immediate_execute_command shas = [s.sha for s in scripts] # we can't use the normal script_* methods because they would just # get buffered in the pipeline. exists = immediate('SCRIPT EXISTS', *shas) if not all(exists): for s, exist in izip(scripts, exists): if not exist: s.sha = immediate('SCRIPT LOAD', s.script) def execute(self, raise_on_error=True): "Execute all the commands in the current pipeline" stack = self.command_stack if not stack: return [] if self.scripts: self.load_scripts() if self.transaction or self.explicit_transaction: execute = self._execute_transaction else: execute = self._execute_pipeline conn = self.connection if not conn: conn = self.connection_pool.get_connection('MULTI', self.shard_hint) # assign to self.connection so reset() releases the connection # back to the pool after we're done self.connection = conn try: return execute(conn, stack, raise_on_error) except (ConnectionError, TimeoutError) as e: conn.disconnect() if not conn.retry_on_timeout and isinstance(e, TimeoutError): raise # if we were watching a variable, the watch is no longer valid # since this connection has died. raise a WatchError, which # indicates the user should retry his transaction. If this is more # than a temporary failure, the WATCH that the user next issues # will fail, propegating the real ConnectionError if self.watching: raise WatchError("A ConnectionError occured on while watching " "one or more keys") # otherwise, it's safe to retry since the transaction isn't # predicated on any state return execute(conn, stack, raise_on_error) finally: self.reset() def watch(self, *names): "Watches the values at keys ``names``" if self.explicit_transaction: raise RedisError('Cannot issue a WATCH after a MULTI') return self.execute_command('WATCH', *names) def unwatch(self): "Unwatches all previously specified keys" return self.watching and self.execute_command('UNWATCH') or True class Script(object): "An executable Lua script object returned by ``register_script``" def __init__(self, registered_client, script): self.registered_client = registered_client self.script = script # Precalculate and store the SHA1 hex digest of the script. if isinstance(script, basestring): # We need the encoding from the client in order to generate an # accurate byte representation of the script encoder = registered_client.connection_pool.get_encoder() script = encoder.encode(script) self.sha = hashlib.sha1(script).hexdigest() def __call__(self, keys=[], args=[], client=None): "Execute the script, passing any required ``args``" if client is None: client = self.registered_client args = tuple(keys) + tuple(args) # make sure the Redis server knows about the script if isinstance(client, Pipeline): # Make sure the pipeline can register the script before executing. client.scripts.add(self) try: return client.evalsha(self.sha, len(keys), *args) except NoScriptError: # Maybe the client is pointed to a differnet server than the client # that created this instance? # Overwrite the sha just in case there was a discrepancy. self.sha = client.script_load(self.script) return client.evalsha(self.sha, len(keys), *args) class BitFieldOperation(object): """ Command builder for BITFIELD commands. """ def __init__(self, client, key, default_overflow=None): self.client = client self.key = key self._default_overflow = default_overflow self.reset() def reset(self): """ Reset the state of the instance to when it was constructed """ self.operations = [] self._last_overflow = 'WRAP' self.overflow(self._default_overflow or self._last_overflow) def overflow(self, overflow): """ Update the overflow algorithm of successive INCRBY operations :param overflow: Overflow algorithm, one of WRAP, SAT, FAIL. See the Redis docs for descriptions of these algorithmsself. :returns: a :py:class:`BitFieldOperation` instance. """ overflow = overflow.upper() if overflow != self._last_overflow: self._last_overflow = overflow self.operations.append(('OVERFLOW', overflow)) return self def incrby(self, fmt, offset, increment, overflow=None): """ Increment a bitfield by a given amount. :param fmt: format-string for the bitfield being updated, e.g. 'u8' for an unsigned 8-bit integer. :param offset: offset (in number of bits). If prefixed with a '#', this is an offset multiplier, e.g. given the arguments fmt='u8', offset='#2', the offset will be 16. :param int increment: value to increment the bitfield by. :param str overflow: overflow algorithm. Defaults to WRAP, but other acceptable values are SAT and FAIL. See the Redis docs for descriptions of these algorithms. :returns: a :py:class:`BitFieldOperation` instance. """ if overflow is not None: self.overflow(overflow) self.operations.append(('INCRBY', fmt, offset, increment)) return self def get(self, fmt, offset): """ Get the value of a given bitfield. :param fmt: format-string for the bitfield being read, e.g. 'u8' for an unsigned 8-bit integer. :param offset: offset (in number of bits). If prefixed with a '#', this is an offset multiplier, e.g. given the arguments fmt='u8', offset='#2', the offset will be 16. :returns: a :py:class:`BitFieldOperation` instance. """ self.operations.append(('GET', fmt, offset)) return self def set(self, fmt, offset, value): """ Set the value of a given bitfield. :param fmt: format-string for the bitfield being read, e.g. 'u8' for an unsigned 8-bit integer. :param offset: offset (in number of bits). If prefixed with a '#', this is an offset multiplier, e.g. given the arguments fmt='u8', offset='#2', the offset will be 16. :param int value: value to set at the given position. :returns: a :py:class:`BitFieldOperation` instance. """ self.operations.append(('SET', fmt, offset, value)) return self @property def command(self): cmd = ['BITFIELD', self.key] for ops in self.operations: cmd.extend(ops) return cmd def execute(self): """ Execute the operation(s) in a single BITFIELD command. The return value is a list of values corresponding to each operation. If the client used to create this instance was a pipeline, the list of values will be present within the pipeline's execute. """ command = self.command self.reset() return self.client.execute_command(*command)